
tcframe Documentation
Release 0.6.0

Ashar Fuadi

February 08, 2016

Contents

1 Introduction 3
1.1 Philosophy . 3
1.2 Features . 3
1.3 Examples . 4

2 Installation 7
2.1 Dependencies . 7
2.2 Setup . 7

3 Basic concepts 9
3.1 Problem specification . 10
3.2 Problem configuration . 10
3.3 Input/output variables . 10
3.4 Input/output format . 11
3.5 Constraints . 11
3.6 Generator specification . 13
3.7 Generator configuration . 13
3.8 Test cases . 14
3.9 Main function . 15
3.10 Compiling runner program . 18
3.11 Running runner program . 18

4 Advanced concepts 19
4.1 Manipulating input variables with different representation . 19
4.2 Complex input/output format . 19
4.3 Complex predicates in constraints . 20
4.4 Multiple test cases per file (ICPC-style) . 20

5 Simulating submission 23
5.1 Brief output . 24

6 API reference 27
6.1 Problem configuration . 27
6.2 Input/output variables . 27
6.3 Input/output segments . 27
6.4 Constraints . 29
6.5 Generator configuration . 29
6.6 Test cases . 29
6.7 Random number generator . 30

i

6.8 Command-line options . 31

7 Credits 33

8 License 35

ii

tcframe Documentation, Release 0.6.0

Contents:

Contents 1

tcframe Documentation, Release 0.6.0

2 Contents

CHAPTER 1

Introduction

tcframe is a framework for generating test cases, designed especially for problems in competitive programming con-
tests. If you are a problem author and want to create test cases for your problem, you are on the right site!

1.1 Philosophy

First, let’s begin with a philosophy on why this project is useful.

Why do we need to write generator for test cases?

• Writing test cases manually is error-prone and time-consuming.

• We can easily distribute the test cases, as a single, small file.

• We can easily modify test case values in the future, for example when there are changes in the constraints.

Why do we need a test cases generation framework?

• Not all people know how to write a test cases generator.

• To avoid writing repetitive and boring tasks, for example, creating test case files with appropriate numbering,
running official solution against the test case input files, etc.

• To make all problems in a contest have test cases generator with consistent format.

For the above reasons, tcframe was developed.

1.2 Features

As a framework, tcframe offers the following exciting features:

• Excluding the official solution, we only need to write a single C++ program, called runner program.

• The runner program has a syntax that is easy to read.

• The runner program is nicely structured in several parts, similar to the problem statement: input format, output
format, constraints/subtasks, etc.

• The resulting test cases are validated according to the specification constraints/subtasks.

• All errors (for example: constraints unsatisfiability) are presented to the users in human-readable format so that
they can easily fix the errors.

3

tcframe Documentation, Release 0.6.0

1.3 Examples

Here are some example of runner programs written using tcframe framework:

1.3.1 For problems without subtasks

#include "tcframe/runner.hpp"
using namespace tcframe;

class Problem : public BaseProblem {
protected:

int A, B;
int K;

int result;

void InputFormat() {
LINE(A, B);
LINE(K);

}

void OutputFormat() {
LINE(result);

}

void Constraints() {
CONS(1 <= A && A <= 1000);
CONS(1 <= B && B <= 1000);
CONS(0 <= K && K <= 100);

}
};

class Generator : public BaseGenerator<Problem> {
protected:

void SampleTestCases() {
SAMPLE_CASE({

"1 1",
"100"

});
}

void TestCases() {
CASE(A = 1, B = 100, K = 7);
CASE(A = 100, B = 2000, K = 0);

}
};

int main(int argc, char* argv[]) {
Runner<Problem> runner(argc, argv);

runner.setGenerator(new Generator());
return runner.run();

}

The above runner program, when run, will output:

4 Chapter 1. Introduction

tcframe Documentation, Release 0.6.0

Generating test cases...

[SAMPLE TEST CASES]
problem_sample_1: OK

[OFFICIAL TEST CASES]
problem_1: OK
problem_2: FAILED
Description: A = 100, B = 2000, K = 0
Reasons:

* Does not satisfy constraints, on:
- 1 <= B && B <= 1000

1.3.2 For problems with subtasks

#include "tcframe/runner.hpp"
using namespace tcframe;

class Problem : public BaseProblem {
protected:

int A, B;
int K;

int result;

void InputFormat() {
LINE(A, B);
LINE(K);

}

void OutputFormat() {
LINE(result);

}

void Subtask1() {
CONS(1 <= A && A <= 1000);
CONS(1 <= B && B <= 1000);
CONS(0 <= K && K <= 100);

}

void Subtask2() {
CONS(1 <= A && A <= 2000000000);
CONS(1 <= B && B <= 2000000000);
CONS(0 <= K && K <= 10000);

}

void Subtask3() {
CONS(A == 0);
CONS(B == 0);
CONS(0 <= K && K <= 100);

}
};

class Generator : public BaseGenerator<Problem> {
protected:

void SampleTestCases() {
SAMPLE_CASE({

1.3. Examples 5

tcframe Documentation, Release 0.6.0

"1 1",
"100"

}, {1, 2});
}

void TestGroup1() {
assignToSubtasks({1, 2});

CASE(A = 1, B = 100, K = 7);
CASE(A = 100, B = 2000, K = 0);

}

void TestGroup2() {
assignToSubtasks({2});

CASE(A = 1, B = 2, K = 1);
CASE(A = 0, B = 0, K = 100);

}
};

int main(int argc, char* argv[]) {
Runner<Problem> runner(argc, argv);

runner.setGenerator(new Generator());
return runner.run();

}

The above runner program, when run, will output:

Generating test cases...

[SAMPLE TEST CASES]
problem_sample_1: FAILED
Reasons:

* Cannot parse for variable `B`. Found: <whitespace>

[TEST GROUP 1]
problem_1_1: OK
problem_1_2: FAILED
Description: A = 100, B = 2000, K = 0
Reasons:

* Does not satisfy subtask 1, on constraints:
- 1 <= B && B <= 1000

[TEST GROUP 2]
problem_2_1: FAILED
Description: A = 1, B = 2, K = 1
Reasons:

* Satisfies subtask 1 but is not assigned to it
problem_2_2: FAILED
Description: A = 0, B = 0, K = 100
Reasons:

* Does not satisfy subtask 2, on constraints:
- 1 <= A && A <= 2000000000
- 1 <= B && B <= 2000000000

* Satisfies subtask 3 but is not assigned to it

6 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 Dependencies

tcframe needs the following minimum requirements:

• UNIX-based operating system

• GCC >= 4.7

2.2 Setup

tcframe only consists of C++ header files; nothing to be really installed to your system. Clone the header files from
GitHub.

7

https://github.com/fushar/tcframe

tcframe Documentation, Release 0.6.0

8 Chapter 2. Installation

CHAPTER 3

Basic concepts

Let’s learn how to write a generator using tcframe with this basic tutorial. Consider the following example problem.

Description

You are given integers N and K, and an array consisting of N integers. Compute the largest possible product of any K
elements of the array! Each element can be used more than once.

Input Format

The first line contains two integers N and K. The second line contains N space-separated integers: the elements of the
array.

Output Format

A single line containing the required product.

Sample Input

5 3
0 1 -1 2 -2

Sample Output

8

Subtask 1:

• N = 1

• 1 <= K <= 100

• -100000 <= A[i] <= 100000

Subtask 2:

• 1 <= N <= 100

• K = 1

• -100000 <= A[i] <= 100000

Subtask 3:

• 1 <= N <= 100

• 1 <= K <= 100

• -100000 <= A[i] <= 100000

9

tcframe Documentation, Release 0.6.0

We will be writing a test cases generator for this problem. The program we will be writing is called runner program.
Create a C++ file, for example, runner.cpp.

First of all, we need to include the main tcframe runner header file:

#include "tcframe/runner.hpp"
using namespace tcframe;

Then, we will need to write specifications as will be explained in the next sections.

3.1 Problem specification

The first step is to write a problem specification class. It is basically a class that represents a problem’s test case
variables, I/O format, and the required constraints/subtasks.

Create a class that inherits BaseProblem. The convention is to name the class Problem:

class Problem : public BaseProblem {
protected:

// components here

};

A problem specification consists of several components. Note that publicly defined components must all go to the
protected section of the class. You are allowed to write private helper variables and/or methods, of course.

3.2 Problem configuration

This component consists of configuration of several aspects of the problem. To define this component, override the
method void BaseProblem::Config(). For example, for this problem, we want that the slug (i.e., file prefix) for the
test cases to be “k-product”.

void Config() {
setSlug("k-product");

}

The complete reference of configurable aspects of a problem can be found here: Problem configuration API reference.

This component can be omitted if you don’t want to override any default settings.

3.3 Input/output variables

Input variables are a collection of variables which compose test cases inputs. They can be usually found in the input
format section in the problem statement. For this problem, we have three input variables: N, K, and A. The input
variables are defined as protected member variables.

In this problem, we have two scalars (N, K) and one vector (A) as the input variables. We define them as follows:

int N;
int K;
vector<int> A;

10 Chapter 3. Basic concepts

tcframe Documentation, Release 0.6.0

Similarly, output variables are a collection of variables which compose test cases inputs. Most of the cases, this is
just a single variable and does not have a particular name in the problem statement. Let’s just call it result.

int N;
int K;
vector<int> A;

int result;

The complete reference of input/output variables can be found here: Input/output variables API reference.

3.4 Input/output format

Input format specifies how the input variables should be printed in test case input files. To define this component,
override the method void BaseProblem::InputFormat(). The format is specified in terms of consecutive input seg-
ments. Basically an input segment arranges the layout of several input variables.

A test case input file for this problem consists of a single containing N and K, followed by a single line containing
space-separated elements of A. We can define that format as follows:

void InputFormat() {
LINE(N, K);
LINE(A % SIZE(N));

}

Similarly, output format specifies how the input variables should be printed in test case input files. To define this
component, override the method void BaseProblem::OutputFormat().

void OutputFormat() {
LINE(result);

}

The complete reference of input/output segments can be found here: Input/output segments API reference.

3.5 Constraints

This components specifies the constraints of the problem; i.e., the conditions that must be satisfied by the input/output
variables. Two types of problems are supported: the ones without subtasks, and the ones with subtasks.

For problems without subtasks: Override the method void BaseProblem::Constraints().

For problems with subtasks: Override each of the methods void BaseProblem::SubtaskX(), where X is a positive
integer denoting the subtask number.

Note: As of this version, you can define up to 10 subtasks: Subtask1() .. Subtask10().

Inside the overriden method(s), we can define the constraints. A constraint is defined with a CONS() macro containing
a boolean expression.

Let’s define the subtasks for this problem.

void Subtask1() {
CONS(N == 1);
CONS(1 <= K && K <= 100);
CONS(eachElementBetween(A, -100000, 100000));

3.4. Input/output format 11

tcframe Documentation, Release 0.6.0

}

void Subtask2() {
CONS(1 <= N && N <= 100);
CONS(K == 1);
CONS(eachElementBetween(A, -100000, 100000));

}

void Subtask3() {
CONS(1 <= N && N <= 100);
CONS(1 <= K && K <= 100);
CONS(eachElementBetween(A, -100000, 100000));

}

where eachElementBetween() is a private helper method, defined as follows:

bool eachElementBetween(const vector<int>& A, int lo, int hi) {
for (int x : A) {

if (x < lo || x > hi) {
return false;

}
}
return true;

}

Note: As of this version, there is currently no easy way to test a predicate for each element of a vector. The
workaround is to write a helper method ourselves, like what we did above.

The complete reference of constraints can be found here: Constraints API reference.

We have now completed writing a problem specification class. In summary, our class should look like this:

class Problem : public BaseProblem {
protected:

int N;
int K;
vector<int> A;

int result;

void Config() {
setSlug("k-product");

}

void InputFormat() {
LINE(N, K);
LINE(A % SIZE(N));

}

void OutputFormat() {
LINE(result);

}

void Subtask1() {
CONS(N == 1);
CONS(1 <= K && K <= 100);
CONS(eachElementBetween(A, -100000, 100000));

12 Chapter 3. Basic concepts

tcframe Documentation, Release 0.6.0

}

void Subtask2() {
CONS(1 <= N && N <= 100);
CONS(K == 1);
CONS(eachElementBetween(A, -100000, 100000));

}

void Subtask3() {
CONS(1 <= N && N <= 100);
CONS(1 <= K && K <= 100);
CONS(eachElementBetween(A, -100000, 100000));

}

private:
bool eachElementBetween(const vector<int>& A, int lo, int hi) {

for (int x : A) {
if (x < lo || x > hi) {

return false;
}

}
return true;

}
};

The nice thing is that this problem specification class is really similar to the problem statement! This class will then
serve as a “contract” for the generator, which we will write next.

3.6 Generator specification

The next step is to write a generator specification class. It is basically a class that represents a collection of (randomly
generated) test cases, based on the specification defined in the problem specification class.

Create a class that inherits BaseGenerator<T>, where T is the problem specification class. The convention is to name
the class Generator:

class Generator : public BaseGenerator<Problem> {
protected:

// components here

};

Similar to a problem specification, a generator specification consists of several components, which must go to the
protected section of the class.

3.7 Generator configuration

This component consists of configuration of several aspects of the problem. To define this component, override the
method void BaseGenerator::Config(). Currently, we can define where the test cases are output, and which solution to
run on the test case input files.

For this problem:

3.6. Generator specification 13

tcframe Documentation, Release 0.6.0

void Config() {
setTestCasesDir("tc");
setSolutionCommand("./solution");

}

Note: For this tutorial, please create an executable file named “solution” in the same directory as generator.cpp. It
could be any solution – for example, a solution that just prints Hello World.

The complete reference of generator configuration can be found here: Generator configuration API reference.

The above configuration is the default one. This component can be omitted if you don’t want to override any default
values, which we will do for this tutorial.

3.8 Test cases

This component specifies a collection of values of the problem’s input variables, each of which constitute a test case.
Two types of problems are supported: the ones without subtasks, and the ones with subtasks.

For problems without subtasks: Override the method BaseGenerator::TestCases(). The content of this method
will be explained shortly.

For problems with subtasks: The idea is that a test case must be able to be assigned to more than one subtasks. To
support this, we introduce a concept called test groups. A test group is a set of test cases that are assigned to the same
set of subtasks.

First, create a Venn diagram denoting the valid test cases for all subtasks. For this problem, the diagram will be like
this:

14 Chapter 3. Basic concepts

tcframe Documentation, Release 0.6.0

In order to have a strong set of test cases, we should create a test group for each closed region in the Venn diagram.
In this case, we will have four test groups as follows:

• Test group 1: consists of only one test case N = K = 1. Assign it to subtasks {1, 2, 3}.

• Test group 2: generate test cases that satisfy N = 1; 2 <= K <= 100. Assign them to subtasks {1, 3}.

• Test group 3: generate test cases that satisfy 2 <= N <= 100; K = 1. Assign them to subtasks {2, 3}.

• Test group 4: generate test cases that satisfy 2 <= N, K <= 100. Assign them to subtasks {3}.

To define test groups, override each of the methods BaseGenerator::TestGroupX(), where X is a positive integer
denoting the test group number. Then, call assignToSubtasks(S) method as the first statement, where S is a list of
subtask numbers. The remaining content of test group methods are test case definitions which will be explained below.

Note: As of this version, you can define up to 10 test groups: TestGroup1() .. TestGroup10().

Inside the methods TestCases() or TestGroupX(), we can define the test cases. A test case is defined with a CASE()
macro containing a list of assignment to an input variable or method call. Each CASE() defines a single test case and
should assign valid values to all input variables. For example:

void TestGroup2() {
assignToSubtasks({1, 3});

CASE(N = 1, K = 3, randomArray());
CASE(N = 1, K = 100, randomArray());

}

where randomArray() is a private helper method that assign random values (between -100000 and 100000) to each
of the element A[0] .. A[N-1]:

void randomArray() {
A.clear(); // important!
for (int i = 0; i < N; i++) {

A.push_back(rnd.nextInt(-100000, 100000));
}

}

Note: Yes, we can access the input variables directly inside the generator, even though they belong to the problem
specification class!

Here, we are using random number generator object rnd that is available inside generator class. The complete
reference of randomization methods can be found here: Random number generator API reference.

We will also define sample test cases. Each sample test case is independent to each other, and they are not included in
any test group. Therefore, for problems with subtasks, we must assign a set of subtasks for each sample test case.

The complete reference of test case and sample test case definitions can be found here: Test cases API reference.

3.9 Main function

After writing problem and generator specification classes, write the main() function and configure the runner as
follows:

3.9. Main function 15

tcframe Documentation, Release 0.6.0

int main(int argc, char* argv[]) {
Runner<Problem> runner(argc, argv);

runner.setGenerator(new Generator());
return runner.run();

}

The complete runner program for this problem is summarized below.

Note that for vector input variables, don’t forget to clear them before assigning the values.

#include "tcframe/runner.hpp"
using namespace tcframe;

#include <random>
#include <vector>
using namespace std;

class Problem : public BaseProblem {
protected:

int N;
int K;
vector<int> A;

int result;

void Config() {
setSlug("k-product");

}

void InputFormat() {
LINE(N, K);
LINE(A % SIZE(N));

}

void OutputFormat() {
LINE(result);

}

void Subtask1() {
CONS(N == 1);
CONS(1 <= K && K <= 100);
CONS(eachElementBetween(A, -100000, 100000));

}

void Subtask2() {
CONS(1 <= N && N <= 100);
CONS(K == 1);
CONS(eachElementBetween(A, -100000, 100000));

}

void Subtask3() {
CONS(1 <= N && N <= 100);
CONS(1 <= K && K <= 100);
CONS(eachElementBetween(A, -100000, 100000));

}

private:
bool eachElementBetween(const vector<int>& A, int lo, int hi) {

16 Chapter 3. Basic concepts

tcframe Documentation, Release 0.6.0

for (int x : A) {
if (x < lo || x > hi) {

return false;
}

}
return true;

}
};

class Generator : public BaseGenerator<Problem> {
protected:

void SampleTestCases() {
SAMPLE_CASE({

"5 3",
"0 1 -1 2 -2"

}, {3});
}

void TestGroup1() {
assignToSubtasks({1, 2, 3});

CASE(N = 1, K = 1, randomArray());
}

void TestGroup2() {
assignToSubtasks({1, 3});

CASE(N = 1, K = 2, randomArray());
CASE(N = 1, K = 10, randomArray());
CASE(N = 1, K = 100, randomArray());

}

void TestGroup3() {
assignToSubtasks({2, 3});

CASE(N = 2, K = 1, randomArray());
CASE(N = 10, K = 1, randomArray());
CASE(N = 100, K = 1, randomArray());

}

void TestGroup4() {
assignToSubtasks({3});

CASE(N = 2, K = 2, randomArray());
CASE(N = 10, K = 10, randomArray());
CASE(N = 42, K = 58, randomArray());
CASE(N = 100, K = 100, randomArray());
CASE(N = 100, K = 100, randomArray());
CASE(N = 100, K = 100, randomArray());

}

private:
void randomArray() {

A.clear(); // important!
for (int i = 0; i < N; i++) {

A.push_back(rnd.nextInt(-100000, 100000));
}

}

3.9. Main function 17

tcframe Documentation, Release 0.6.0

};

int main(int argc, char* argv[]) {
Runner<Problem> runner(argc, argv);

runner.setGenerator(new Generator());
return runner.run();

}

3.10 Compiling runner program

Suppose that your runner program is runner.cpp. Compile it using this compilation command:

g++ -I[path to tcframe]/include -std=c++11 -o runner runner.cpp

For example:

g++ -I/home/fushar/tcframe/include -std=c++11 -o runner runner.cpp

Note: The current version needs GCC version >= 4.7.

3.11 Running runner program

Just run

./runner

There are several command-line options that can be specified when running the runner program. The options mostly
override the problem and generator configuration. For example, we can override the specified official solution:

./runner --solution-command="java Solution"

See Command-line options for more information on the command-line options.

The status of the generation of each test case will be output to the standard output. For each successful test case, the
input-output file pair will be stored in the specified test cases directory (by default, it is “tc”).

Generation can fail due to several reasons:

Invalid input/output format For example: using scalar variable for a grid segment.

Invalid input variable states For example: a grid segment requires that the size is 2 x 3, but after applying the test
case definition, the matrix consists of 3 x 4 elements.

Unsatisfied constraints/subtasks The input variables do not conform to the constraints.

18 Chapter 3. Basic concepts

CHAPTER 4

Advanced concepts

4.1 Manipulating input variables with different representation

Often, we want to manipulate input variables with a different representation from what is defined in the input format
section. For example, suppose that we want to have a tree as an input. In the input format, we specify the tree as a list
of edges (U[i], V[i]) as follows:

void InputFormat() {
LINE(N);
LINES(U, V) % SIZE(N - 1);

}

and we want to manipulate the tree as a vector P[], where P[i] is the parent of node i. (I.e., we have private variable
vector<int> P in Generator.)

This can be achieved by overriding a special method BaseGenerator::FinalizeInput() method and transforming vec-
tor P[] into pair of vectors (U[], V[]) in it.

void FinalizeInput() {
U.clear();
P.clear();
for (int i = 0; i < N; i++) {

if (P[i] != -1) {
U.push_back(i);
V.push_back(P[i]);

}
}

}

4.2 Complex input/output format

Suppose we have the following input format description from the problem statement:

The first line contains an integer N. The next N lines each contains one of the following type:

• 1 A[i] B[i]

• 2 A[i] B[i] C[i]

How to deal with this one?

Unfortunately, as of this version, the above format is not supported yet. This version only supports input/output formats
that are free of custom loops and conditional branches.

19

tcframe Documentation, Release 0.6.0

I am designing how to support that in the next versions.

4.3 Complex predicates in constraints

Similarly, methods used in defining constraints (Constraints(), SubtaskX()) must be free of custom loops and condi-
tional branches. If you want to use complex predicate, such as determining whether the input is a tree, create a custom
private helper method that return boolean (whether the input is a tree).

4.4 Multiple test cases per file (ICPC-style)

tcframe supports ICPC-style problem as well. In this style, for each of the SampleTestCases(), TestCases(), and
TestGroupX() methods, the test cases will be combined into a single file. The file is prepended with a single line
containing the number of test cases in it.

To write, an ICPC-style test cases generator, first write the runner as usual, assuming that the problem not ICPC-style.
Then, apply the following changes.

4.4.1 Problem specification class

• Declare an integer variable (e.g., T) that will hold the number of test cases in a single file.

protected:
int T;

...

• In the problem configuration, call setMultipleTestCasesCount() method with the previous variable as the ar-
gument.

void Config() {
...

setMultipleTestCasesCount(T);

...
}

• The input format specification should not contain T. It should specify the format of a single test case only. The
number of test cases will be automatically prepended in the final combined test case input file.

• We can impose a constraint on T, inside MultipleTestCasesConstraints() method.

void MultipleTestCasesConstraints() {
CONS(1 <= T <= 20);

}

4.4.2 Generation specification class

No changes are necessary.

20 Chapter 4. Advanced concepts

tcframe Documentation, Release 0.6.0

4.4.3 Solution program

Although the input format only specifies a single test case, the solution should read the number of test cases in the first
line. In other words, the solution will read the final combined test cases input file.

4.4. Multiple test cases per file (ICPC-style) 21

tcframe Documentation, Release 0.6.0

22 Chapter 4. Advanced concepts

CHAPTER 5

Simulating submission

tcframe allows you to simulate solution submission locally, on your machine.

Before simulating a submission, you must have generated the test cases:

./runner

Then, you can simulate a submission, by executing:

./runner submit [<submissionCommand>]

where <submissionCommand> is the command for executing the submission. If it is omitted, then the command will
be the original solution command used in the generator.

For example, suppose you have written a generator for a problem. Your friend also has written an alternate solution
to the problem, and he wants to check whether his solution agrees with yours. Let’s assume that his solution file is
alt_solution.cpp. Compile it into alt_solution, place it in the same directory of the runner, and then run

./runner submit ./alt_solution

The verdict of each test case will be shown. The verdict will be one of the following:

Accepted (AC) The output produced by the submission matches.

Wrong Answer (WA) The output produced by the submission does not match. The diff will be shown, truncated to
the first 10 lines.

Runtime Error (RTE) The submission crashed or used memory above the limit, if specified.

Time Limit Exceeded (TLE) The submission did not stop within the time limit, if specified.

The verdict of each subtask will be also shown. The verdict of a subtask is the worst verdict of all verdicts of test cases
that are assigned to it. Here, RTE is worse than WA, and WA is worse than AC.

Here is a sample output of a submission simulation for problems with subtasks.

Submitting...

[SAMPLE TEST CASES]
k-product_sample_1: Accepted

[TEST GROUP 1]
k-product_1_1: Accepted

[TEST GROUP 2]
k-product_2_1: Accepted
k-product_2_2: Accepted

23

tcframe Documentation, Release 0.6.0

k-product_2_3: Accepted

[TEST GROUP 3]
k-product_3_1: Accepted
k-product_3_2: Wrong Answer

* Diff:
(expected) [line 01] 11
(received) [line 01] 12

k-product_3_3: Accepted

[TEST GROUP 4]
k-product_4_1: Accepted
k-product_4_2: Accepted
k-product_4_3: Accepted
k-product_4_4: Accepted
k-product_4_5: Accepted
k-product_4_6: Runtime Error

* Execution of submission failed:
- Exit code: 1
- Standard error:

[RESULT]
Subtask 1: Accepted
Subtask 2: Wrong Answer
Subtask 3: Runtime Error

and here is for problems without subtasks

Submitting...

[SAMPLE TEST CASES]
k-product_sample_1: Accepted

[OFFICIAL TEST CASES]
k-product_1: Accepted
k-product_2: Accepted
k-product_3: Accepted
k-product_4: Wrong Answer

* Diff:
(expected) [line 01] 11
(received) [line 01] 12

[RESULT]
Wrong Answer

This submission simulation feature is useful for creating “unit tests” for your test cases. For each problem, you
can write many solutions with different intended results. For example, solution_123.cpp should pass subtasks 1 - 3;
solution_12.cpp should pass subtasks 1 and 2 but not subtask 3, etc.

You can also specify options. See Command-line options for available command-line options. The most useful optionr
are specifying time and memory limit.

5.1 Brief output

If you want to automate checking the result of each solution, you can set the output of the submission to be “brief”,
i.e., concise and easy to parse by another program. Just pass the command-line option --brief:

24 Chapter 5. Simulating submission

tcframe Documentation, Release 0.6.0

./runner submit ./alt_solution --brief

Here is a sample brief output for problems with subtasks:

1:AC
2:WA
3:RTE

And here is for problems without subtasks:

WA

5.1. Brief output 25

tcframe Documentation, Release 0.6.0

26 Chapter 5. Simulating submission

CHAPTER 6

API reference

6.1 Problem configuration

The following methods can be called inside the overridden method BaseProblem::Config().

void setSlug(string slug)
Sets the slug of the problem. A slug is a nickname or code for the problem. The produced test case filenames
will have the slug as prefix. For example, if the slug is helloworld” then one valid test case filename is “hel-
loworld_1.in”.

If not specified, the default slug is “problem”.

void setTimeLimit(int timeLimitInSeconds)
Sets the time limit of the problem, in seconds. This time limit is used in simulating submission.

void setMemoryLimit(int memoryLimitInMegabytes)
Sets the memory limit of the problem, in MB. This memory limit is used in simulating submission.

6.2 Input/output variables

There are three types of variables that are supported:

Scalar Variables of built-in integral types (int, long long, char, etc.), built-in floating-point types (float, double), and
std::string.

Vector std::vector<T>, where T is a scalar type as defined above. Note that you cannot use arrays (T[]).

Matrix std::vector<std::vector<T>>, where T is a scalar type as defined above. Note that you cannot use 2D arrays
(T[][]).

6.3 Input/output segments

The following macros can be called inside the overridden method BaseProblem::InputFormat() or BaseProb-
lem::OutputFormat().

EMPTY_LINE()
Defines an empty line.

LINE(comma-separated elements)
Defines a single line containing space-separated scalar or vector variables. In case of vector variables, the
elements are separated by spaces as well.

27

tcframe Documentation, Release 0.6.0

element is one of:

•<scalar variable name>.

•<vector variable name> % SIZE(<number of elements>). The number of elements can be a constant or
a scalar variable.

•<vector variable name>. Here, the number of elements is unspecified. This kind of element must occur
last in a line segment, if any. Elements will be considered until new line is found.

For example:

void InputFormat() {
LINE(N);
LINE(A % SIZE(3), B);
LINE(M, C % SIZE(M));

}

With N = 2, A = {1, 2, 3}, B = {100, 200, 300, 400}, M = 2, C = {7, 8}, the above segments will produce:

2
1 2 3 100 200 300 400
2 7 8

LINES(comma-separated vector variable names) % SIZE(number of elements)
Defines multiple lines, each consisting space-separated elements of given vector variables.

For example:

void InputFormat() {
LINES(V) % SIZE(2);
LINES(X, Y) % SIZE(N);

}

With V = {1, 2}, X = {100, 110, 120}, Y = {200, 210, 220}, N = 3, the above segments will produce:

1
2
100 200
110 210
120 220

GRID(matrix variable name) % SIZE(number of rows, number of columns)
Defines a grid consisting elements of a given matrix variable. If the given matrix variable is of type char, the
elements in each row is not space-separated, otherwise they are space-separated.

For example:

void InputFormat() {
GRID(G) % SIZE(2, 2);
GRID(H) % SIZE(R, C);

}

With G = {{‘a’, ‘b’}, {‘c’, ‘d’}}, H = {{1, 2, 3}, {4, 5, 6}}, R = 2, C = 3, the above segments will produce:

ab
cd
1 2 3
4 5 6

28 Chapter 6. API reference

tcframe Documentation, Release 0.6.0

6.4 Constraints

The following macros can be called inside the overridden method BaseProblem::Constraints() or BaseProb-
lem::SubtaskX().

CONS(predicate)
Defines a constraint. predicate is a boolean expression, whose value must be completely defined by the values
of the input variables (only).

For example:

void Subtask1() {
CONS(A <= B && B <= 1000);
CONS(graphDoesNotHaveCycles());

}

6.5 Generator configuration

The following methods can be called inside the overridden method BaseGenerator::Config().

void setTestCasesDir(string testCasesDir)
Sets the directory for the generated test case files, relative to the location of the generator program.

If not specified, the default directory is “tc”.

void setSolutionCommand(string solutionCommand)
Sets the command for executing the official solution. This will be used for generating test case output files. For
each input files, this will be executed:

solutionCommand < [input filename] > [output filename]

If not specified, the default solution command is ”./solution”.

6.6 Test cases

The following macros can be called inside the overridden method BaseGenerator::()).

void assignToSubtasks(set<int> subtaskNumbers)
Assigns the current test test group to a set of subtasks.

For example:

void TestGroup1() {
assignToSubtasks({1, 3});

// test case definitions follow
}

The following macros can be called inside the overridden method BaseGenerator::TestCases() or BaseGenera-
tor::TestGroupX().

CASE(comma-separated statements)
Defines a test case.

statement should be one of:

•assignment to an input variables

6.4. Constraints 29

tcframe Documentation, Release 0.6.0

•private method call that assigns values to one or more input variables

For example:

void TestCases() {
CASE(N = 42, M = 100, randomArray());
CASE(N = 1000, M = 1000, randomArray());

}

The following macros can be called inside the overridden method BaseGenerator::SampleTestCases().

SAMPLE_CASE(list of lines[, list of subtask numbers])
Defines a sample test case. A sample test case is defined as an exact literal string, given as list of lines. list of
subtask numbers are only valid in problems with subtasks.

For example, to define this sample test case:

1 2
3 4 5

You can do this way:

void SampleTestCases() {
SAMPLE_CASE({

"1 2",
"3 4 5"

});
}

for problems without subtasks. For problems with subtasks:

void SampleTestCases() {
SAMPLE_CASE({

"1 2",
"3 4 5"

}, {1, 3});
}

assuming that the sample test case is assigned to subtasks 1 and 3.

Multiple sample test cases can be defined inside the same method.

6.7 Random number generator

The following methods can be called on the random number generator rnd object inside a generator.

int nextInt(int minNum, int maxNum)
Return a uniformly distributed random integer (int) between minNum and maxNum, inclusive.

int nextInt(int maxNumEx)
Return a uniformly distributed random integer (int) between 0 and maxNumEx - 1, inclusive.

long long nextLongLong(long long minNum, long long maxNum)
Return a uniformly distributed random integer (long long) between minNum and maxNum, inclusive.

long long nextLongLong(long long maxNumEx)
Return a uniformly distributed random integer (long long) between 0 and maxNumEx - 1, inclusive.

double nextDouble(double minNum, double maxNum)
Return a uniformly distributed random real number (double) between minNum and maxNum, inclusive.

30 Chapter 6. API reference

tcframe Documentation, Release 0.6.0

double nextDouble(double maxNum)
Return a uniformly distributed random real number (double) between 0 and maxNum, inclusive.

void shuffle(RandomAccessIterator first, RandomAccessIterator last)
Randomly shuffles the elements in [first, last). Use this rather than std::random_shuffle.

6.8 Command-line options

The following options can be specified when running the runner program. They mostly override the specified problem
and generator configuration.

--slug=slug
Overrides the slug specified by setSlug() in BaseProblem::Config().

--tc-dir=dir
Overrides the test cases directory specified by setTestCasesDir() in BaseGenerator::Config().

--solution-command=command
Overrides the solution command specified by setSolutionCommand() in BaseGenerator::Config().

--seed=seed
Sets the seed for the random number generator rnd inside the generator.

--time-limit=timeLimitInSeconds
Overrides the time limit specified by setTimeLimit() in BaseProblem::Config().

--memory-limit=memoryLimitInMegabytes
Overrides the memory limit specified by setMemoryLimit() in BaseProblem::Config().

--no-time-limit
Unset the time limit specified by setTimeLimit() in BaseProblem::Config().

--no-memory-limit
Unset the memory limit specified by setMemoryLimit() in BaseProblem::Config().

6.8. Command-line options 31

tcframe Documentation, Release 0.6.0

32 Chapter 6. API reference

CHAPTER 7

Credits

tcframe is written by Ashar Fuadi.

It is a significant improvement of tokilib, written by the same author.

tokilib itself is essentially a wrapper for testlib, written by Mike Mirzayanov et al.

33

https://github.com/fushar/tokilib
https://code.google.com/p/testlib/

tcframe Documentation, Release 0.6.0

34 Chapter 7. Credits

CHAPTER 8

License

tcframe is released under MIT license.

35

tcframe Documentation, Release 0.6.0

36 Chapter 8. License

Index

A
assignToSubtasks (C++ function), 29

C
CASE() (built-in function), 29
CONS() (built-in function), 29

E
EMPTY_LINE() (built-in function), 27

G
GRID() (built-in function), 28

L
LINE() (built-in function), 27
LINES() (built-in function), 28

N
nextDouble (C++ function), 30
nextInt (C++ function), 30
nextLongLong (C++ function), 30

S
SAMPLE_CASE() (built-in function), 30
setMemoryLimit (C++ function), 27
setSlug (C++ function), 27
setSolutionCommand (C++ function), 29
setTestCasesDir (C++ function), 29
setTimeLimit (C++ function), 27
shuffle (C++ function), 31

37

	Introduction
	Philosophy
	Features
	Examples

	Installation
	Dependencies
	Setup

	Basic concepts
	Problem specification
	Problem configuration
	Input/output variables
	Input/output format
	Constraints
	Generator specification
	Generator configuration
	Test cases
	Main function
	Compiling runner program
	Running runner program

	Advanced concepts
	Manipulating input variables with different representation
	Complex input/output format
	Complex predicates in constraints
	Multiple test cases per file (ICPC-style)

	Simulating submission
	Brief output

	API reference
	Problem configuration
	Input/output variables
	Input/output segments
	Constraints
	Generator configuration
	Test cases
	Random number generator
	Command-line options

	Credits
	License

